If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2+6p-16=4
We move all terms to the left:
2p^2+6p-16-(4)=0
We add all the numbers together, and all the variables
2p^2+6p-20=0
a = 2; b = 6; c = -20;
Δ = b2-4ac
Δ = 62-4·2·(-20)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-14}{2*2}=\frac{-20}{4} =-5 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+14}{2*2}=\frac{8}{4} =2 $
| 7/2x+1/2x=131/2=131/2+9/2x | | -4(-4-3x)=64 | | -x-7=-6x+13 | | 7x2-567=0 | | 2/5y-2/25=5/2y | | 5x+6=-7x-6 | | 3(x-4)-2x=10 | | 1/2(12n-30)=15 | | 6a-5+9a=7-4a-12 | | 66=102/g | | 4+2x+6=12 | | -7=z-1 | | G-3(g-4)=20 | | -2x+17=4x-67 | | 40+80+3x=120+3x | | 7r+8=4r=-13 | | x+8=(23-x)-(15-2x) | | X+2x+3x=4x+100 | | 3(2n+1)-5=28 | | X-1/3x=180° | | -5n+40=-2 | | 3t-2-7t=4t+6 | | -15x+60=15x | | X²+18x=63 | | z^2-72=0 | | 137+(3+8x)=180 | | 7p+20=6 | | 2(x+5)=(3x-3) | | 56+(3x-5)=180 | | 13x×5x= | | 3x2-7x+1=-1 | | n²–n–20=0 |